
images/NECSISlogo.png

SyVOLT: Full Model Transformation Verification
Using Contracts

Levi Lúcio, Bentley James Oakes†, Cláudio Gomes‡, Gehan Selim?, Juergen
Dingel?, James R. Cordy?, and Hans Vangheluwe†‡

†McGill University, Montreal, Canada ‡University of Antwerp, Belgium,
?Queen’s University, Kingston, Canada

r

Problem Statement

We introduce SyVOLT, a plugin for the Eclipse development environment for the verification of structural pre- /post-condition contracts on model transformations. The
plugin allows the user to build transformations in our transformation language DSLTrans using a visual editor. The pre-/post-condition contracts to be proved on the
transformation can also be built in a similar interface. Our contract proving process is exhaustive, meaning that if a contract is said to hold, then the contract will hold for
all input models of a transformation. If the contract does not hold, then the counter-examples (i.e., input models) where the contract fails will be presented.
Demo: https://www.youtube.com/watch?v=8PrR5RhPptY

SyVOLT Highlights

Input Independence and
Exhaustiveness

SyVOLT proves that pre-/post-condition
contracts hold for a model
transformation. Such contracts
establish relations between patterns
occurring in input and output models of
a model transformation. If a contract
holds, a formal guarantee exists that
whenever a transformation?s input
model contains the pattern specified in
the pre-condition of the contract, the
transformation?s output model will
contain the pattern specified in the
contract?s post-condition. Contracts
can op- tionally include traceability
relations between input and output
patterns. Our technique is exhaustive
and input-independent, in the sense
that whenever a contract holds, it will
hold for all possible input models for
that transformation. This is possible
because SyVOLT operates on
specifications of out-place model
transformations, where unbounded
loops and model element deletions are
not allowed. A discussion on the
soundness and completeness of our
approach is provided in [16].

Push-Button Proofs
The proving process for a SyVOLT
contract is fully au- tomatic and all of
the approach?s formal details are com-
pletely hidden from the user. Once the
transformation and the contracts of
interest are created, one command will
start the property proving process. This
process will automatically create all
required artifacts (as detailed in
Section III), run the process, and
provide the results to the user within
the Eclipse environment. This allows
the user to continually stay within the
Eclipse environment, where he or she
develops the contracts and the model
transformations.

Based on Symbolic
Execution

Our technique shares its principles
with symbolic execu- tion, a classic
method to verify code. The
underlying idea entails building a
finite representation of the (infinite)
set of computations that can be
expressed by a model
transformation specification. In this
context, each symbolic execution ?
which in the context of our work we
call a path condition ? is an
overlapping combination of a
subset of the transformation?s
rules. Because a path condition
contains a number of rules, it
represents the execution of the
model transformation over any
input model those rules match on.
Contracts of interest are proved on
the set of path conditions built for a
model transformation, and are
extrapolated to the infinite set of
the model transformation?s
computations through an
abstraction relation [16].

Proving Contracts about ATL
Model Transformations

The Atlas Transformation Language
(ATL) [1] is commonly-used in both
industrial and academic applications.
In order to enable contract proving on
ATL transformations, we have
developed a higher-order
transformation that is able to
automatically transform declarative
ATL transformations into DSLTrans
transformations [19]. In the future we
will integrate this higher-order
transformation into SyVOLT?s user
interface.

Scalability and Speed
We have some evidence that SyVOLT
scales to transfor- mations of practical
interest. In particular we have verified
contracts on DSLTrans transformations
with up to over 60 rules, and ATL
transformations with up to 13 rules [19].
From our own experience, the size of a
DSLTrans transformation ranges from 10
up to 50 rules, while the average size of
an ATL transformation is around 20 rules
[15]. Even though our technique is
exhaustive, our experiments show that
verifica- tion can be performed within
seconds. Gehan Selim?s PhD thesis [22]
provides further evidence of SyVOLT?s
speed, by verifying a relatively large
model transformation for giving
semantics to the UML-RT language in
terms of the Kiltera process language
[20]. SyVOLT?s symbolic execution
engine is fully homegrown [17] and does
not depend on third-party solvers.
Although this has implied a large effort to
build the codebase, it has allowed us to
have the required control over the code to
iteratively optimize the engine for space
and time economy. [23] demonstrates
that our prover is substantially faster than
similar approaches based on SAT
solvers.

Integration with Eclipse / Graphical Modelling

Eclipse Frontend
Eclipse is a popular development environment, as many model transformation tools such as ATL,
DSLTrans [10] and EGL [3] are integrated with the Eclipse Modeling Framework (EMF) [2]. To take
advantage of this ecosystem, SyVOLT integrates with EMF to represent models in a multitude of
syntaxes, from graphical to textual. Modellers may then operate in their preferred syntax, although
the authors suggest the visual representation of a contract in the SyVOLT editor allows for intuitive
understanding of the contract?s meaning.

Counter-Examples

When a given contract does not hold on a given model transformation, SyVOLT can produce
additional information for the user to pinpoint where the contract?s violation occurs. This information
is in the form of the set of model transforma- tion rules used to build a particular path condition for
which the contract fails. A counter-example is any input model where this set of rules would execute.
For example, the sample output in Figure 1 alerts the user that the contract motherFather will fail
when only the mother and father rules execute in the transformation.
〉 Proving contracts:

〉 Contract ‘‘daughterMother’’ holds for all input models!
〉 Contract ‘‘motherFather’’ does NOT hold for all input models! The
contract fails on the following Path Conditions:
[’EmptyPathCondition RootRule FatherRule MotherRule’, ...]
〉 The smallest Path Conditions where the contract fails are:
[’EmptyPathCondition FatherRule MotherRule’]
〉 Time to verify 2 contracts: 11.6834638966 seconds.

Architecture

The following model-driven development tools have been used in SyVOLT?s
development:

I Himesis [21]: Himesis is a typed graph representation format, built upon the
open-source igraph library [6]. In [25], it is reported empirically that Himesis is
a good format to perform the typical graph manipulationFig. 2. The architecture
of the SyVOLT tool operations. Himesis is used pervasively within SyVOLT to
represent all models and model transformation rules required by the proof
algorithm.

I T-Core [24]: T-Core is a collection of model transfor- mation primitives allowing
fine-grained manipulation of models represented in the Himesis format. The
main oper- ations of T-Core are model matching, model rewriting and iterating
through a set of match sites in a model. The level of control in model
manipulation, together with T-Core?s speed and scalability when treating large
models, suited our needs well when implementing the property proof algorithm
described in [16]. Note that because T-Core is also explicitly modelled, a
T-Core model transformation rule is also a (Himesis) model.

I Eclipse Modelling Framework (EMF): SyVOLT makes use of EMF?s Ecore
format for the XMI representation of DSLTrans transformations and SyVOLT?s
contracts within the Eclipse editors.

I Epsilon Generation Language (EGL): Converting Ecore models into Himesis
models is achieved using EGL, a model-to-text transformation language.

1. SyVOLT Contract Editor 2. Generating Rule and Contract Artifacts 3. Generating Artifacts for Path Condition
Generation

4. Path Condition Generation
5. Contract Proof

Bibliography

[1] Bentley James Oakes, Optimizing Simulink Models, Report for COMP 621 - Program Analysis and Transformations, https://github.com/BentleyJOakes/BDOT

[2] Joachim Denil and Pieter J. Mosterman and Hans Vangheluwe, Rule-Based Model Transformation For, and In Simulink, Theory of Modeling and Simulation 2014 (to appear)

http://msdl.cs.mcgill.ca/ bentley.oakes@mail.mcgill.ca

https://www.youtube.com/watch?v=8PrR5RhPptY
https://github.com/BentleyJOakes/BDOT
http://msdl.cs.mcgill.ca/

