SyVOLT: Full Model Transformation Verification

Using Contracts

Levi Lucio, Bentley James Oakes', Claudio Gomes*, Gehan Selim*, Juergen
Dingel*, James R. Cordy*, and Hans Vangheluwe'*

Problem Statement

"McGill University, Montreal, Canada

*University of Antwerp, Belgium,

*Queen’s University, Kingston, Canada

SyVOLT Highlights

Input Independence and
Exhaustiveness

SyVOLT proves that pre-/post-condition
contracts hold for a model
transformation. Such contracts
establish relations between patterns
occurring in input and output models of
a model transformation. If a contract
holds, a formal guarantee exists that
whenever a transformation?s input
model contains the pattern specified in
the pre-condition of the contract, the
transformation?s output model will
contain the pattern specified in the
contract?s post-condition. Contracts
can op- tionally include traceability
relations between input and output
patterns. Our technique is exhaustive
and input-independent, in the sense
that whenever a contract holds, it will
hold for all possible input models for
that transformation. This is possible
because SyVOLT operates on
specifications of out-place model
transformations, where unbounded
loops and model element deletions are
not allowed. A discussion on the

Push-Button Proofs

The proving process for a SyVOLT
contract is fully au- tomatic and all of
the approach?s formal details are com-
pletely hidden from the user. Once the
transformation and the contracts of
interest are created, one command will
start the property proving process. This
process will automatically create all
required artifacts (as detailed in
Section lll), run the process, and
provide the results to the user within
the Eclipse environment. This allows
the user to continually stay within the
Eclipse environment, where he or she
develops the contracts and the model
transformations.

Based on Symbolic
Execution

Our technique shares its principles
with symbolic execu- tion, a classic
method to verify code. The
underlying idea entails building a
finite representation of the (infinite)
set of computations that can be
expressed by a model
transformation specification. In this
context, each symbolic execution ?
which in the context of our work we
call a path condition ? is an
overlapping combination of a
subset of the transformation?s
rules. Because a path condition
contains a number of rules, it
represents the execution of the
model transformation over any
iInput model those rules match on.
Contracts of interest are proved on
the set of path conditions built for a
model transformation, and are
extrapolated to the infinite set of
the model transformation?s
computations through an
abstraction relation [16].

We introduce SyVOLT, a plugin for the Eclipse development environment for the verification of structural pre- /post-condition contracts on model transformations. The
plugin allows the user to build transformations in our transformation language DSLTrans using a visual editor. The pre-/post-condition contracts to be proved on the
transformation can also be built in a similar interface. Our contract proving process is exhaustive, meaning that if a contract is said to hold, then the contract will hold for
all input models of a transformation. If the contract does not hold, then the counter-examples (i.e., input models) where the contract fails will be presented.

Demo: https://www.youtube.com/watch?v=8PrR5RhPptY

Proving Contracts about ATL

Model Transformations

The Atlas Transformation Language

(ATL) [1] is commonly-used in both

iIndustrial and academic applications.
In order to enable contract proving on

ATL transformations, we have
developed a higher-order
transformation that is able to
automatically transform declarative
ATL transformations into DSLTrans

transformations [19]. In the future we

will integrate this higher-order
transformation into SyVOLT ?s user
interface.

Scalability and Speed

We have some evidence that SyVOLT
scales to transfor- mations of practical
interest. In particular we have verified
contracts on DSLTrans transformations
with up to over 60 rules, and ATL
transformations with up to 13 rules [19].
From our own experience, the size of a
DSLTrans transformation ranges from 10
up to 50 rules, while the average size of
an ATL transformation is around 20 rules
[15]. Even though our technique is
exhaustive, our experiments show that
verifica- tion can be performed within
seconds. Gehan Selim?s PhD thesis [22]
provides further evidence of SyVOLT?7s
speed, by verifying a relatively large
model transformation for giving
semantics to the UML-RT language in
terms of the Kiltera process language
[20]. SyVOLT?s symbolic execution
engine is fully homegrown [17] and does
not depend on third-party solvers.
Although this has implied a large effort to
build the codebase, it has allowed us to
have the required control over the code to
iteratively optimize the engine for space

and time economy. [23] demonstrates
that our prover is substantially faster than
similar approaches based on SAT
solvers.

soundness and completeness of our
approach is provided in [16].

Integration with Eclipse / Graphical Modelling

motherFatherProp.syvolt_diagram 238

++ Palette [+

heaao-

(. Objects 0
(L Concatenation

@ motherFather

E;:;.‘ Member

@ Contract

= ExistsMatchClass

‘ firstiame

Post-Attribute

EB Post-Element
n_ﬂ PostCondition

Pre-Attribute

E‘l Pre-Element

PreConditicn

& Same Value

E Specification

= Connections £

@ AttributeRef

@ Post-Association

& Pre-Association

Same Post-Elements

Same Pre-Elements

%, Trace Link

Eclipse Frontend

Eclipse is a popular development environment, as many model transformation tools such as ATL,
DSLTrans [10] and EGL [3] are integrated with the Eclipse Modeling Framework (EMF) [2]. To take
advantage of this ecosystem, SyVOLT integrates with EMF to represent models in a multitude of
syntaxes, from graphical to textual. Modellers may then operate in their preferred syntax, although
the authors suggest the visual representation of a contract in the SyVOLT editor allows for intuitive
understanding of the contract?s meaning.

Counter-Examples

When a given contract does not hold on a given model transformation, SyVOLT can produce
additional information for the user to pinpoint where the contract?s violation occurs. This information
IS In the form of the set of model transforma- tion rules used to build a particular path condition for
which the contract fails. A counter-example is any input model where this set of rules would execute.
For example, the sample output in Figure 1 alerts the user that the contract motherFather will fail
when only the mother and father rules execute in the transformation.

) Proving contracts:
) Contract ‘‘daughterMother’’ holds for all input models'!
) Contract ‘‘motherFather’’ does NOT hold for all input models! The
contract fails on the following Path Conditions:

[/ EmptyPathCondition RootRule FatherRule MotherRule’, ...]
) The smallest Path Conditions where the contract fails are:

[/ EmptyPathCondition FatherRule MotherRule’]
11.6834638966 seconds.

) Time to verify 2 contracts:

Architecture

The followina madel-driven devselanment tanle have heen 1isad in SYV/OI T?<
bentley.oakes@mail.mcgill.ca

http://msdl.cs.mcgill.ca/



https://www.youtube.com/watch?v=8PrR5RhPptY
https://github.com/BentleyJOakes/BDOT
http://msdl.cs.mcgill.ca/

